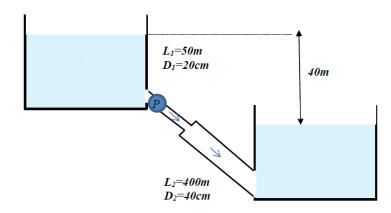
ORDRE DES INGÉNIEURS DU QUÉBEC

SESSION DE NOVEMBRE 2024

Note au sujet de la propriété intellectuelle des modèles d'examen de l'Ordre des ingénieurs du Québec

Les modèles d'examen se trouvant sur le site internet de l'Ordre des ingénieurs du Québec sont la propriété exclusive de l'Ordre et leur utilisation est strictement limitée à des fins académiques et personnelles. Toute reproduction, distribution ou utilisation commerciale non autorisée de ces modèles constitue une violation de la propriété intellectuelle et est strictement interdite. L'Ordre se réserve le droit de prendre toutes les mesures légales appropriées contre toute utilisation non autorisée de ses modèles d'examen.

Toute documentation permise

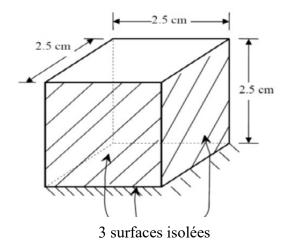

Calculatrices : modèles autorisés seulement

Durée de l'examen : 3 heures Nombre de questions : 3

22-MC-A1 THERMODYNAMIQUE APPLIQUEE, MECANIQUE DES FLUIDES ET TRANSFERT DE CHALEUR

Question nº 1 (30 %)

Deux grands réservoirs ouverts à l'atmosphère remplis d'eau sont reliés par deux conduites en acier rivé (ε = 0,0009 m). La première conduite fait 20 cm de diamètre et de 50 m de longueur est la deuxième conduite fait 40 cm de diamètre et de 400 m de longueur. Les niveaux des deux réservoirs diffèrent de 40 m. Les pertes de charge singulières sont considérées comme négligeables . On installe une pompe de 80% de rendement à la sortie du premier réservoir.


- a) Quelle doit être la puissance P (kW) fournie à la pompe si on veut obtenir un débit volumique de 0,4 m³/s du réservoir supérieur au réservoir inférieur.?
- b) Quelle doit être la puissance P (kW) fournie à la pompe si on veut obtenir un débit volumique de **0,4m³/s du** réservoir **inférieur au** réservoir **supérieur.** ?

Note: Prendre $\mu = 10^{-3} N.s/m^2$, $\rho = 1000 \ kg/m^3$ et $g = 9.81 m/s^2$, <u>le digramme de Moody se trouve à la page#4 si nécessaire</u>

Question n° 2 (30 %)

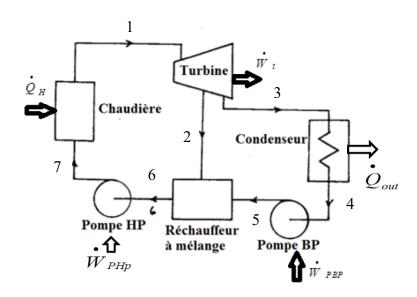
Un cube en métal ($\rho = 8000 \text{ kg/m}^3$, Cp = 1000 J/kg·K, k = 25 W/m·K), en forme de parallélépipède et à température uniforme de $Ti = 400 ^{\circ} \text{C}$, a trois de ses surfaces très bien isolées (adiabatiques), comme le montre la figure ci-dessous. À l'instant t=0s, il est subitement exposé au refroidissement par convection: $T\infty = 20 ^{\circ} \text{C}$ avec un coefficient de convection $h = 50 \text{ W/m}^2 \cdot \text{K}$.

Quelle sera la température moyenne du cube après 2 heures ?

Question n° 3 (40 %)

Une simple centrale réelle à vapeur se compose d'une chaudière, d'une turbine, d'un condenseur, d'un réchauffeur à mélange ouvert et deux pompes (Basse Pression BP et Haute Pression HP) comme indiqué ci-dessous. La vapeur entre dans la turbine à l'état 1. Une partie de la vapeur est extraite de la turbine à l'état 2 pour être utilisée dans le réchauffeur. La vapeur restante sort de la turbine à l'état 3 et pénètre dans le condenseur. L'eau sort du condenseur à l'état 4, est pressurisé par la pompe basse pression, et pénètre dans le réchauffeur à l'état 5. L'eau préchauffée sort du réchauffeur d'eau d'alimentation à l'état 6, est pressurisée à l'état 7 dans la pompe haute pression et entre dans la chaudière. La turbine produit une puissance de $\dot{W}_t = 9890, 6 \text{ kW}$. La chaudière transmet à l'eau une puissance de $\dot{Q}_H = 33290 \text{ kW}$.

La puissance consommée par la pompe basse pression (BP) est de $\dot{W}_{PBP} = 180$ kW. Les données de la centrale sont résumées dans le **Tableau 1**.


Les dispositifs opèrent en régime permanent. On peut négliger les pertes de pression à travers les tuyaux, la chaudière, le condenseur et le réchauffeur à mélange. On peut aussi négliger les changements d'énergie cinétique et potentielle.

On demande de:

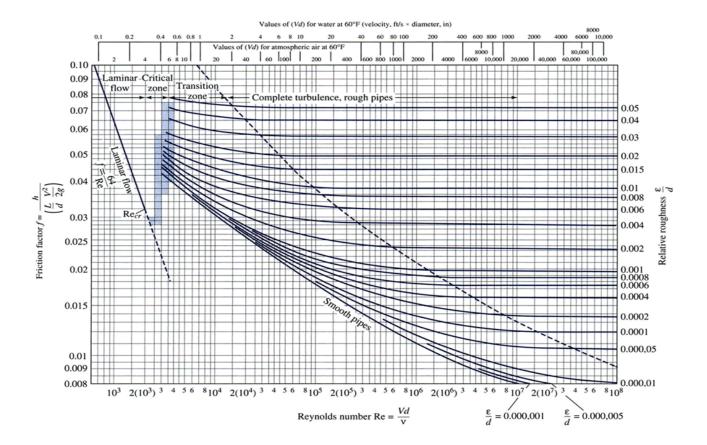

- a) Déterminer le débit massique de la vapeur extraite (état 2)
- b) Calculer la puissance nette produite.
- c) Calculer le rendement de la pompe haute pression (pompe HP)
- d) Calculer le rendement thermique du cycle.

Tableau 1 : Données de la centrale

	. I water I i D amiro a do in	
$m_1 = 13,48kg / s$	état1 : P ₁ =5MPa, T ₁ = 400°C	état2 : P ₂ =800 kPa, T ₂ = 250°C
état3 : $P_3 = 10 \text{ kPa}, x_3 = 0.9$		état5 : P ₅ =800 kPa, T ₅ = 45 °C

Annexe 1: Diagramme de Moody

Annexe 2: Tables thermodynamiques

Temp.	Press. kPa P	Specific Volume m ² /kg		Internal Energy kJ/kg			Enthalpy kJ/kg			Entropy kJ/kg-K		
		Sat. Liquid V/	Sat. Vapor Vg	Sat. Liquid u _f	Evap.	Sat. Vapor ug	Sat. Liquid hy	Evap.	Sat. Vapor hg	Sat. Liquid	Evap.	Sat. Vapor s _g
30	4.246	0.001 004	32.89	125.78	2290.8	2416.6	125.79	2430.5	2556.3	0.4369	8.0164	8.4533
35	5.628	0.001 006	25.22	146.67	2276.7	2423.4	146.68	2418.6	2565.3	0.5053	7.8478	8.3531
40	7.384	0.001 008	19.52	167.56	2262.6	2430.1	167.57	2406.7	2574.3	0.5725	7.6845	8.2570
45	9.593	0.001 010	15.26	188.44	2248.4	2436.8	188.45	2394.8	2583.2	0.6387	7.5261	8.1648
50	12.349	0.001 012	12.03	209.32	2234.2	2443.5	209.33	2382.7	2592.1	0.7038	7.3725	8.0763
55	15.758	0.001.015	9.568	230.21	2219.9	2450.1	230.23	2370.7	2600.9	0.7679	7.2234	7.9913

Press. kPa	Temp. °C T		Volume 3/kg	Internal Energy kJ/kg			E	nthalpy kJ/kg		Entropy kJ/kg-K		
		Sat. Liquid	Sat. Vapor	Sat. Liquid u _f	Evap.	Sat. Vapor u _g	Sat. Liquid	Evap.	Sat. Vapor h _g	Sat. Liquid	Evap.	Sat. Vapor s _g
10	45.81	0.001 010	14.67	191.82	2246.1	2437.9	191.83	2392.8	2584.7	0.6493	7.5009	8.1502
15	53.97	0.001 014	10.02	225.92	2222.8	2448.7	225.94	2373.1	2599.1	0.7549	7.2536	8.0085
20	60.06	0.001 017	7.649	251.38	2205.4	2456.7	251.40	2358.3	2609.7	0.8320	7.0766	7.9085
MPA												
0.70	164.97	0.001 108	0.2729	696.44	1876.1	2572.5	697.22	2066.3	2763.5	1.9922	4.7158	6.7080
0.75	167.78	0.001 112	0.2556	708.64	1866.1	2574.7	709.47	2057.0	2766.4	2.0200	4.6647	6.6847
0.80	170.43	0.001 115	0.2404	720.22	1856.6	2576.8	721.11	2048.0	2769.1	2.0462	4.6166	6.6628
0.85	172.96	0.001 118	0.2270	731.27	1847.4	2578.7	732.22	2039.4	2771.6	2.0710	4.5711	6.6421
0.90	175.38	0.001 121	0.2150	741.83	1838.6	2580.5	742.83	2031.1	2773.9	2.0946	4.5280	6.6226
4	250.40	0.001 252	0.049 78	1082.31	1520.0	2602.3	1087.3	1714.	1 2801.	4 2.796	4 3.2737	6.0701
5	263.99	0.001 286	0.039 44	1147.81	1449.3	2597.1	1154.23	1640.	1 2794.	3 2.920	2 3.0532	5.9734
6	275.64	0.001 319	0.032 44	1205.44	1384.3	2589.7	1213.39	1571.	0 2784.	3.026	7 2.8625	5.8892
7	285.88	0.001 351	0.027 37	1257.55	1323.0	2580.5	1267.00	1505.	1 2772.	1 3.121	2.6922	5.8133
8	295.06	0.001 384	0.023 52	1305.57	1264.2	2569.8	1316.6	1 1441.	3 2758.	0 3.206	8 2.5364	5.7432

r °C	m ³ /kg	u kJ/kg	h kJ/kg	s kJ/kg · K	m ³ /kg	u kJ/kg	h kJ/kg	s kJ/kg·K	m ³ /kg	u kJ/kg	h kJ/kg	kJ/kg · K
	P = 0.9	50 MPa (7	sat = 151	.86°C)	P = 0.0	60 MPa (T _{sat} = 158	3.85°C)	P = 0.80 MPa (T _{sat} = 170.43°C)			
Sat.	0.3749	2561.2	2748.7	6.8213	0.3157	2567.4	2756.8	6.7600	0.2404	2576.8	2769.1	6.6628
200	0.4249	2642.9	2855.4	7.0592	0.3520	2638.9	2850.1	6.9665	0.2608	2630.6	2839.3	6.8158
250	0.4744	2723.5	2960.7	7.2709	0.3938	2720.9	2957.2	7.1816	0.2931	2715.5	2950.0	7.0384
300	0.5226	2802.9	3064.2	7.4599	0.4344	2801.0	3061.6	7.3724	0.3241	2797.2	3056.5	7.2328
	$P = 4.0 \text{ MPa} (T_{sat} = 250.40^{\circ}\text{C})$				P = 4	.5 MPa (7	sat = 257	.49°C)	P = 5.0 MPa (T _{sat} = 263.99°C)			
Sat.	0.049 78	2602.3	2801.4	6.0701	0.044 06	2600.1	2798.3	6.0198	0.039 44	2597.1	2794.3	5.9734
275	0.054 57	2667.9	2886.2	6.2285	0.047 30	2650.3	2863.2	6.1401	0.041 41	2631.3	2838.3	6.0544
300	0.058 84	2725.3	2960.7	6.3615	0.051 35	2712.0	2943.1	6.2828	0.045 32	2698.0	2924.5	6.2084
350	0.066 45	2826.7	3092.5	6.5821	0.058 40	2817.8	3080.6	6.5131	0.051 94	2808.7	3068.4	6.4493
400	0.073 41	2919.9	3213.6	6.7690	0.064 75	2913.3	3204.7	6.7047	0.057 81	2906.6	3195.7	6.6459
450	0.080 02	3010.2	3330.3	6.9363	0.070 74	3005.0	3323.3	6.8746	0.063 30	2999.7	3316.2	6.8186
500	0.086 43	3099.5	3445.3	7.0901	0.076 51	3095.3	3439.6	7.0301	0.068 57	3091.0	3433.8	6.9759