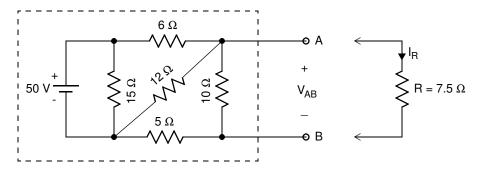
ORDRE DES INGÉNIEURS DU QUÉBEC

MAY 2025 SESSION

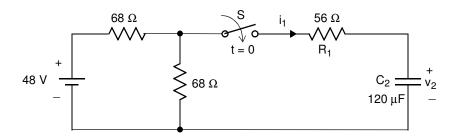
Open-book examination


Calculators: only authorized models

Time allowed: 3 hours

20-MB-B2 ELECTRIC CIRCUITS AND POWER

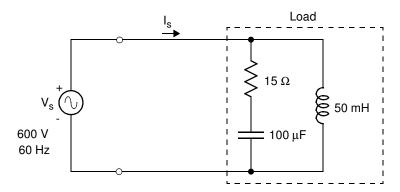
Problem no. 1 (16 points)


Consider the resistive circuit shown in the following figure.

- a) Using a method of your choice, **determine** the Thévenin equivalent across terminals A-B. (10 points)
- b) A resistor R = 7.5 Ω is connected across terminals A-B. Calculate the current I_R and the power dissipated in resistor R. (6 points)

Problem no. 2 (17 points)

In the circuit shown in the following figure, switch S has been open for a very long time.

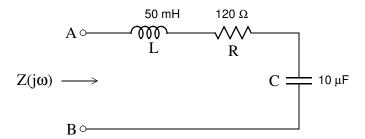


At time t = 0, switch S is closed and kept closed for the rest of the time.

- a) **Determine** the current $i_1(t)$ and the voltage $v_2(t)$ for t > 0. (9 points)
- b) **Plot** the current $i_1(t)$ and the voltage $v_2(t)$ as a function of time. (5 points) **What is** the duration of the transient? (3 points)

Problem no. 3 (17 points)

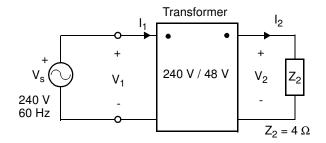
A 60 Hz sinusoidal voltage source is connected to an RLC load as shown in the following figure.


The rms value of the source V_s is 600 V. The phase of the source V_s is 0.

- a) Calculate the current I_s (rms value and phase) (8 points)

 Draw a vector diagram to illustrate the relationship between V_s and I_s . (4 points)
- b) **Calculate** the active power dissipated in the load. (5 points)

Problem no. 4 (17 points)


Consider the circuit shown in the following figure.

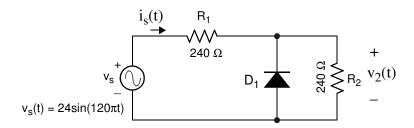
- a) **Determine** the impedance $Z(j\omega)$ seen across terminals A and B of the circuit. (8 points)
- b) **Determine** and **plot** the modulus and angle of $Z(j\omega)$ as a function of ω . (5 points)
- c) **Determine** the resonant frequency ω_0 of the circuit. (4 points)

Problem no. 5 (17 points)

Consider the circuit shown in the following figure.

The transformer parameters are given: $R_s = 3.6 \Omega$, $X_s = 7.2 \Omega$, $R_m = \infty$, $X_m = \infty$.

A resistive load $Z_2 = 4 \Omega$ is connected to the secondary.


- a) Calculate the voltage V_2 and the current I_2 at the transformer secondary. (8 points)
- b) **Calculate** the active power P₂ delivered to the load. (3 points)

Calculate the power dissipated in the transformer. (3 points)

Deduce the transformer efficiency. (3 points)

Problem no. 6 (16 points)

Consider the circuit shown in the following figure.

The conduction voltage of diode D_1 is equal to $V_F = 0.7$ V.

- a) Using the constant V_F model for the diode, **determine** and **plot** the voltage $v_2(t)$ as a function of time. Clearly indicate the particular values of voltage $v_2(t)$. (8 points)
- b) **Determine** and **plot** the current $i_s(t)$ as a function of time. <u>Clearly indicate the particular values</u> of current $i_s(t)$. (6 points)
- c) Calculate the power dissipated in resistor R₁. (2 points)